Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II

Identifieur interne : 000132 ( PascalFrancis/Corpus ); précédent : 000131; suivant : 000133

Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II

Auteurs : YOUHUA TANG ; Gregory R. Carmichael ; Narisara Thongboonchoo ; TIANFENG CHAI ; Larry W. Horowitz ; Robert B. Pierce ; Jassim A. Al-Saadi ; Gabriele Pfister ; Jeffrey M. Vukovich ; Melody A. Avery ; Glen W. Sachse ; Thomas B. Ryerson ; John S. Holloway ; Elliot L. Atlas ; Frank M. Flocke ; Rodney J. Weber ; L. Gregory Huey ; Jack E. Dibb ; David G. Streets ; William H. Brune

Source :

RBID : Pascal:07-0317987

Descripteurs français

English descriptors

Abstract

The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O3. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O3 predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 112
A06       @2 D10
A08 01  1  ENG  @1 Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II
A11 01  1    @1 YOUHUA TANG
A11 02  1    @1 CARMICHAEL (Gregory R.)
A11 03  1    @1 THONGBOONCHOO (Narisara)
A11 04  1    @1 TIANFENG CHAI
A11 05  1    @1 HOROWITZ (Larry W.)
A11 06  1    @1 PIERCE (Robert B.)
A11 07  1    @1 AL-SAADI (Jassim A.)
A11 08  1    @1 PFISTER (Gabriele)
A11 09  1    @1 VUKOVICH (Jeffrey M.)
A11 10  1    @1 AVERY (Melody A.)
A11 11  1    @1 SACHSE (Glen W.)
A11 12  1    @1 RYERSON (Thomas B.)
A11 13  1    @1 HOLLOWAY (John S.)
A11 14  1    @1 ATLAS (Elliot L.)
A11 15  1    @1 FLOCKE (Frank M.)
A11 16  1    @1 WEBER (Rodney J.)
A11 17  1    @1 HUEY (L. Gregory)
A11 18  1    @1 DIBB (Jack E.)
A11 19  1    @1 STREETS (David G.)
A11 20  1    @1 BRUNE (William H.)
A14 01      @1 Center for Global and Regional Environmental Research, University of Iowa @2 Iowa City, Iowa @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory, NOAA @2 Princeton, New Jersey @3 USA @Z 5 aut.
A14 03      @1 NASA Langley Research Center @2 Hampton, Virginia @3 USA @Z 6 aut. @Z 7 aut. @Z 10 aut. @Z 11 aut.
A14 04      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 8 aut. @Z 15 aut.
A14 05      @1 Carolina Environmental Program, University of North Carolina @2 Chapel Hill, North Carolina @3 USA @Z 9 aut.
A14 06      @1 Chemical Sciences Division, Earth System Research Laboratory, NOAA @2 Boulder, Colorado @3 USA @Z 12 aut. @Z 13 aut.
A14 07      @1 Rosenstiel School of Marine and Atmospheric Science, University of Miami @2 Miami, Florida @3 USA @Z 14 aut.
A14 08      @1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology @2 Atlanta, Georgia @3 USA @Z 16 aut. @Z 17 aut.
A14 09      @1 Institute for the Study of Earth, Oceans, and Space, University of New Hampshire @2 Durham, New Hampshire @3 USA @Z 18 aut.
A14 10      @1 Argonne National Laboratory @2 Argonne, Illinois @3 USA @Z 19 aut.
A14 11      @1 Department of Meteorology, Pennsylvania State University @2 University park, Pennsylvania @3 USA @Z 20 aut.
A20       @2 D10S18.1-D10S18.21
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000146572260810
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 07-0317987
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O3. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O3 predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Condition aux limites @5 01
C03 01  2  ENG  @0 boundary conditions @5 01
C03 01  2  SPA  @0 Condiciones límites @5 01
C03 02  X  FRE  @0 Echelon régional @5 02
C03 02  X  ENG  @0 Regional scope @5 02
C03 02  X  SPA  @0 Escala regional @5 02
C03 03  X  FRE  @0 Qualité air @5 03
C03 03  X  ENG  @0 Air quality @5 03
C03 03  X  SPA  @0 Calidad aire @5 03
C03 04  2  FRE  @0 Prévision @5 04
C03 04  2  ENG  @0 prediction @5 04
C03 04  2  SPA  @0 Previsión @5 04
C03 05  2  FRE  @0 Couplage @5 05
C03 05  2  ENG  @0 coupling @5 05
C03 06  2  FRE  @0 Monde @5 06
C03 06  2  ENG  @0 global @5 06
C03 06  2  SPA  @0 Mundo @5 06
C03 07  2  FRE  @0 Transport @5 07
C03 07  2  ENG  @0 transport @5 07
C03 07  2  SPA  @0 Transporte @5 07
C03 08  2  FRE  @0 Modèle @5 08
C03 08  2  ENG  @0 models @5 08
C03 08  2  SPA  @0 Modelo @5 08
C03 09  2  FRE  @0 Analyse sensibilité @5 09
C03 09  2  ENG  @0 sensitivity analysis @5 09
C03 10  2  FRE  @0 Simulation @5 10
C03 10  2  ENG  @0 simulation @5 10
C03 10  2  SPA  @0 Simulación @5 10
C03 11  X  FRE  @0 Observation par avion @5 11
C03 11  X  ENG  @0 Aircraft observation @5 11
C03 11  X  SPA  @0 Observación por avión @5 11
C03 12  X  FRE  @0 Eté @5 12
C03 12  X  ENG  @0 Summer @5 12
C03 12  X  SPA  @0 Verano @5 12
C03 13  2  FRE  @0 Concentration @5 13
C03 13  2  ENG  @0 concentration @5 13
C03 13  2  SPA  @0 Concentración @5 13
C03 14  2  FRE  @0 Troposphère @5 14
C03 14  2  ENG  @0 troposphere @5 14
C03 15  2  FRE  @0 Variation spatiale @5 15
C03 15  2  ENG  @0 spatial variations @5 15
C03 15  2  SPA  @0 Variación espacial @5 15
C03 16  2  FRE  @0 Variation temporelle @5 16
C03 16  2  ENG  @0 time variations @5 16
C03 16  2  SPA  @0 Variación temporal @5 16
C03 17  2  FRE  @0 Plomb @5 17
C03 17  2  ENG  @0 lead @5 17
C03 17  2  SPA  @0 Plomo @5 17
C03 18  X  FRE  @0 Erreur systématique @5 18
C03 18  X  ENG  @0 Bias @5 18
C03 18  X  SPA  @0 Error sistemático @5 18
C03 19  2  FRE  @0 Etats Unis @2 NG @5 61
C03 19  2  ENG  @0 United States @2 NG @5 61
C03 19  2  SPA  @0 Estados Unidos @2 NG @5 61
C07 01  2  FRE  @0 Amérique du Nord
C07 01  2  ENG  @0 North America
C07 01  2  SPA  @0 America del norte
N21       @1 204
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0317987 INIST
ET : Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II
AU : YOUHUA TANG; CARMICHAEL (Gregory R.); THONGBOONCHOO (Narisara); TIANFENG CHAI; HOROWITZ (Larry W.); PIERCE (Robert B.); AL-SAADI (Jassim A.); PFISTER (Gabriele); VUKOVICH (Jeffrey M.); AVERY (Melody A.); SACHSE (Glen W.); RYERSON (Thomas B.); HOLLOWAY (John S.); ATLAS (Elliot L.); FLOCKE (Frank M.); WEBER (Rodney J.); HUEY (L. Gregory); DIBB (Jack E.); STREETS (David G.); BRUNE (William H.)
AF : Center for Global and Regional Environmental Research, University of Iowa/Iowa City, Iowa/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Geophysical Fluid Dynamics Laboratory, NOAA/Princeton, New Jersey/Etats-Unis (5 aut.); NASA Langley Research Center/Hampton, Virginia/Etats-Unis (6 aut., 7 aut., 10 aut., 11 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (8 aut., 15 aut.); Carolina Environmental Program, University of North Carolina/Chapel Hill, North Carolina/Etats-Unis (9 aut.); Chemical Sciences Division, Earth System Research Laboratory, NOAA/Boulder, Colorado/Etats-Unis (12 aut., 13 aut.); Rosenstiel School of Marine and Atmospheric Science, University of Miami/Miami, Florida/Etats-Unis (14 aut.); School of Earth and Atmospheric Sciences, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (16 aut., 17 aut.); Institute for the Study of Earth, Oceans, and Space, University of New Hampshire/Durham, New Hampshire/Etats-Unis (18 aut.); Argonne National Laboratory/Argonne, Illinois/Etats-Unis (19 aut.); Department of Meteorology, Pennsylvania State University/University park, Pennsylvania/Etats-Unis (20 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2007; Vol. 112; No. D10; D10S18.1-D10S18.21; Bibl. 3/4 p.
LA : Anglais
EA : The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O3. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O3 predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied.
CC : 220; 001E; 001E01
FD : Condition aux limites; Echelon régional; Qualité air; Prévision; Couplage; Monde; Transport; Modèle; Analyse sensibilité; Simulation; Observation par avion; Eté; Concentration; Troposphère; Variation spatiale; Variation temporelle; Plomb; Erreur systématique; Etats Unis
FG : Amérique du Nord
ED : boundary conditions; Regional scope; Air quality; prediction; coupling; global; transport; models; sensitivity analysis; simulation; Aircraft observation; Summer; concentration; troposphere; spatial variations; time variations; lead; Bias; United States
EG : North America
SD : Condiciones límites; Escala regional; Calidad aire; Previsión; Mundo; Transporte; Modelo; Simulación; Observación por avión; Verano; Concentración; Variación espacial; Variación temporal; Plomo; Error sistemático; Estados Unidos
LO : INIST-3144.354000146572260810
ID : 07-0317987

Links to Exploration step

Pascal:07-0317987

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II</title>
<author>
<name sortKey="Youhua Tang" sort="Youhua Tang" uniqKey="Youhua Tang" last="Youhua Tang">YOUHUA TANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carmichael, Gregory R" sort="Carmichael, Gregory R" uniqKey="Carmichael G" first="Gregory R." last="Carmichael">Gregory R. Carmichael</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thongboonchoo, Narisara" sort="Thongboonchoo, Narisara" uniqKey="Thongboonchoo N" first="Narisara" last="Thongboonchoo">Narisara Thongboonchoo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tianfeng Chai" sort="Tianfeng Chai" uniqKey="Tianfeng Chai" last="Tianfeng Chai">TIANFENG CHAI</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pierce, Robert B" sort="Pierce, Robert B" uniqKey="Pierce R" first="Robert B." last="Pierce">Robert B. Pierce</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Al Saadi, Jassim A" sort="Al Saadi, Jassim A" uniqKey="Al Saadi J" first="Jassim A." last="Al-Saadi">Jassim A. Al-Saadi</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pfister, Gabriele" sort="Pfister, Gabriele" uniqKey="Pfister G" first="Gabriele" last="Pfister">Gabriele Pfister</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vukovich, Jeffrey M" sort="Vukovich, Jeffrey M" uniqKey="Vukovich J" first="Jeffrey M." last="Vukovich">Jeffrey M. Vukovich</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Carolina Environmental Program, University of North Carolina</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Avery, Melody A" sort="Avery, Melody A" uniqKey="Avery M" first="Melody A." last="Avery">Melody A. Avery</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sachse, Glen W" sort="Sachse, Glen W" uniqKey="Sachse G" first="Glen W." last="Sachse">Glen W. Sachse</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryerson, Thomas B" sort="Ryerson, Thomas B" uniqKey="Ryerson T" first="Thomas B." last="Ryerson">Thomas B. Ryerson</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Chemical Sciences Division, Earth System Research Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holloway, John S" sort="Holloway, John S" uniqKey="Holloway J" first="John S." last="Holloway">John S. Holloway</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Chemical Sciences Division, Earth System Research Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Atlas, Elliot L" sort="Atlas, Elliot L" uniqKey="Atlas E" first="Elliot L." last="Atlas">Elliot L. Atlas</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Rosenstiel School of Marine and Atmospheric Science, University of Miami</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Flocke, Frank M" sort="Flocke, Frank M" uniqKey="Flocke F" first="Frank M." last="Flocke">Frank M. Flocke</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weber, Rodney J" sort="Weber, Rodney J" uniqKey="Weber R" first="Rodney J." last="Weber">Rodney J. Weber</name>
<affiliation>
<inist:fA14 i1="08">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>16 aut.</sZ>
<sZ>17 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huey, L Gregory" sort="Huey, L Gregory" uniqKey="Huey L" first="L. Gregory" last="Huey">L. Gregory Huey</name>
<affiliation>
<inist:fA14 i1="08">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>16 aut.</sZ>
<sZ>17 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dibb, Jack E" sort="Dibb, Jack E" uniqKey="Dibb J" first="Jack E." last="Dibb">Jack E. Dibb</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire</s1>
<s2>Durham, New Hampshire</s2>
<s3>USA</s3>
<sZ>18 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Streets, David G" sort="Streets, David G" uniqKey="Streets D" first="David G." last="Streets">David G. Streets</name>
<affiliation>
<inist:fA14 i1="10">
<s1>Argonne National Laboratory</s1>
<s2>Argonne, Illinois</s2>
<s3>USA</s3>
<sZ>19 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brune, William H" sort="Brune, William H" uniqKey="Brune W" first="William H." last="Brune">William H. Brune</name>
<affiliation>
<inist:fA14 i1="11">
<s1>Department of Meteorology, Pennsylvania State University</s1>
<s2>University park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>20 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0317987</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0317987 INIST</idno>
<idno type="RBID">Pascal:07-0317987</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II</title>
<author>
<name sortKey="Youhua Tang" sort="Youhua Tang" uniqKey="Youhua Tang" last="Youhua Tang">YOUHUA TANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carmichael, Gregory R" sort="Carmichael, Gregory R" uniqKey="Carmichael G" first="Gregory R." last="Carmichael">Gregory R. Carmichael</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thongboonchoo, Narisara" sort="Thongboonchoo, Narisara" uniqKey="Thongboonchoo N" first="Narisara" last="Thongboonchoo">Narisara Thongboonchoo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tianfeng Chai" sort="Tianfeng Chai" uniqKey="Tianfeng Chai" last="Tianfeng Chai">TIANFENG CHAI</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pierce, Robert B" sort="Pierce, Robert B" uniqKey="Pierce R" first="Robert B." last="Pierce">Robert B. Pierce</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Al Saadi, Jassim A" sort="Al Saadi, Jassim A" uniqKey="Al Saadi J" first="Jassim A." last="Al-Saadi">Jassim A. Al-Saadi</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pfister, Gabriele" sort="Pfister, Gabriele" uniqKey="Pfister G" first="Gabriele" last="Pfister">Gabriele Pfister</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vukovich, Jeffrey M" sort="Vukovich, Jeffrey M" uniqKey="Vukovich J" first="Jeffrey M." last="Vukovich">Jeffrey M. Vukovich</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Carolina Environmental Program, University of North Carolina</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Avery, Melody A" sort="Avery, Melody A" uniqKey="Avery M" first="Melody A." last="Avery">Melody A. Avery</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sachse, Glen W" sort="Sachse, Glen W" uniqKey="Sachse G" first="Glen W." last="Sachse">Glen W. Sachse</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryerson, Thomas B" sort="Ryerson, Thomas B" uniqKey="Ryerson T" first="Thomas B." last="Ryerson">Thomas B. Ryerson</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Chemical Sciences Division, Earth System Research Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holloway, John S" sort="Holloway, John S" uniqKey="Holloway J" first="John S." last="Holloway">John S. Holloway</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Chemical Sciences Division, Earth System Research Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Atlas, Elliot L" sort="Atlas, Elliot L" uniqKey="Atlas E" first="Elliot L." last="Atlas">Elliot L. Atlas</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Rosenstiel School of Marine and Atmospheric Science, University of Miami</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Flocke, Frank M" sort="Flocke, Frank M" uniqKey="Flocke F" first="Frank M." last="Flocke">Frank M. Flocke</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weber, Rodney J" sort="Weber, Rodney J" uniqKey="Weber R" first="Rodney J." last="Weber">Rodney J. Weber</name>
<affiliation>
<inist:fA14 i1="08">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>16 aut.</sZ>
<sZ>17 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huey, L Gregory" sort="Huey, L Gregory" uniqKey="Huey L" first="L. Gregory" last="Huey">L. Gregory Huey</name>
<affiliation>
<inist:fA14 i1="08">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>16 aut.</sZ>
<sZ>17 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dibb, Jack E" sort="Dibb, Jack E" uniqKey="Dibb J" first="Jack E." last="Dibb">Jack E. Dibb</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire</s1>
<s2>Durham, New Hampshire</s2>
<s3>USA</s3>
<sZ>18 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Streets, David G" sort="Streets, David G" uniqKey="Streets D" first="David G." last="Streets">David G. Streets</name>
<affiliation>
<inist:fA14 i1="10">
<s1>Argonne National Laboratory</s1>
<s2>Argonne, Illinois</s2>
<s3>USA</s3>
<sZ>19 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brune, William H" sort="Brune, William H" uniqKey="Brune W" first="William H." last="Brune">William H. Brune</name>
<affiliation>
<inist:fA14 i1="11">
<s1>Department of Meteorology, Pennsylvania State University</s1>
<s2>University park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>20 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air quality</term>
<term>Aircraft observation</term>
<term>Bias</term>
<term>Regional scope</term>
<term>Summer</term>
<term>United States</term>
<term>boundary conditions</term>
<term>concentration</term>
<term>coupling</term>
<term>global</term>
<term>lead</term>
<term>models</term>
<term>prediction</term>
<term>sensitivity analysis</term>
<term>simulation</term>
<term>spatial variations</term>
<term>time variations</term>
<term>transport</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Condition aux limites</term>
<term>Echelon régional</term>
<term>Qualité air</term>
<term>Prévision</term>
<term>Couplage</term>
<term>Monde</term>
<term>Transport</term>
<term>Modèle</term>
<term>Analyse sensibilité</term>
<term>Simulation</term>
<term>Observation par avion</term>
<term>Eté</term>
<term>Concentration</term>
<term>Troposphère</term>
<term>Variation spatiale</term>
<term>Variation temporelle</term>
<term>Plomb</term>
<term>Erreur systématique</term>
<term>Etats Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O
<sub>3</sub>
. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O
<sub>3</sub>
predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA06>
<s2>D10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YOUHUA TANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CARMICHAEL (Gregory R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>THONGBOONCHOO (Narisara)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TIANFENG CHAI</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PIERCE (Robert B.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>AL-SAADI (Jassim A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>PFISTER (Gabriele)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>VUKOVICH (Jeffrey M.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>AVERY (Melody A.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>SACHSE (Glen W.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>RYERSON (Thomas B.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>HOLLOWAY (John S.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>ATLAS (Elliot L.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>FLOCKE (Frank M.)</s1>
</fA11>
<fA11 i1="16" i2="1">
<s1>WEBER (Rodney J.)</s1>
</fA11>
<fA11 i1="17" i2="1">
<s1>HUEY (L. Gregory)</s1>
</fA11>
<fA11 i1="18" i2="1">
<s1>DIBB (Jack E.)</s1>
</fA11>
<fA11 i1="19" i2="1">
<s1>STREETS (David G.)</s1>
</fA11>
<fA11 i1="20" i2="1">
<s1>BRUNE (William H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Global and Regional Environmental Research, University of Iowa</s1>
<s2>Iowa City, Iowa</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>15 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Carolina Environmental Program, University of North Carolina</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Chemical Sciences Division, Earth System Research Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Rosenstiel School of Marine and Atmospheric Science, University of Miami</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>16 aut.</sZ>
<sZ>17 aut.</sZ>
</fA14>
<fA14 i1="09">
<s1>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire</s1>
<s2>Durham, New Hampshire</s2>
<s3>USA</s3>
<sZ>18 aut.</sZ>
</fA14>
<fA14 i1="10">
<s1>Argonne National Laboratory</s1>
<s2>Argonne, Illinois</s2>
<s3>USA</s3>
<sZ>19 aut.</sZ>
</fA14>
<fA14 i1="11">
<s1>Department of Meteorology, Pennsylvania State University</s1>
<s2>University park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>20 aut.</sZ>
</fA14>
<fA20>
<s2>D10S18.1-D10S18.21</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000146572260810</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0317987</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O
<sub>3</sub>
. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O
<sub>3</sub>
predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Condition aux limites</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>boundary conditions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Condiciones límites</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Echelon régional</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Regional scope</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Escala regional</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Prévision</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>prediction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Previsión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Couplage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>coupling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Monde</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>global</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>models</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>simulation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Observation par avion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Aircraft observation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Observación por avión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Eté</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Summer</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Verano</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Variation spatiale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>spatial variations</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Variación espacial</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Variation temporelle</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>time variations</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Variación temporal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Plomb</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>lead</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Plomo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Erreur systématique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Bias</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Error sistemático</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fN21>
<s1>204</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0317987 INIST</NO>
<ET>Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II</ET>
<AU>YOUHUA TANG; CARMICHAEL (Gregory R.); THONGBOONCHOO (Narisara); TIANFENG CHAI; HOROWITZ (Larry W.); PIERCE (Robert B.); AL-SAADI (Jassim A.); PFISTER (Gabriele); VUKOVICH (Jeffrey M.); AVERY (Melody A.); SACHSE (Glen W.); RYERSON (Thomas B.); HOLLOWAY (John S.); ATLAS (Elliot L.); FLOCKE (Frank M.); WEBER (Rodney J.); HUEY (L. Gregory); DIBB (Jack E.); STREETS (David G.); BRUNE (William H.)</AU>
<AF>Center for Global and Regional Environmental Research, University of Iowa/Iowa City, Iowa/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Geophysical Fluid Dynamics Laboratory, NOAA/Princeton, New Jersey/Etats-Unis (5 aut.); NASA Langley Research Center/Hampton, Virginia/Etats-Unis (6 aut., 7 aut., 10 aut., 11 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (8 aut., 15 aut.); Carolina Environmental Program, University of North Carolina/Chapel Hill, North Carolina/Etats-Unis (9 aut.); Chemical Sciences Division, Earth System Research Laboratory, NOAA/Boulder, Colorado/Etats-Unis (12 aut., 13 aut.); Rosenstiel School of Marine and Atmospheric Science, University of Miami/Miami, Florida/Etats-Unis (14 aut.); School of Earth and Atmospheric Sciences, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (16 aut., 17 aut.); Institute for the Study of Earth, Oceans, and Space, University of New Hampshire/Durham, New Hampshire/Etats-Unis (18 aut.); Argonne National Laboratory/Argonne, Illinois/Etats-Unis (19 aut.); Department of Meteorology, Pennsylvania State University/University park, Pennsylvania/Etats-Unis (20 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2007; Vol. 112; No. D10; D10S18.1-D10S18.21; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O
<sub>3</sub>
. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O
<sub>3</sub>
predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Condition aux limites; Echelon régional; Qualité air; Prévision; Couplage; Monde; Transport; Modèle; Analyse sensibilité; Simulation; Observation par avion; Eté; Concentration; Troposphère; Variation spatiale; Variation temporelle; Plomb; Erreur systématique; Etats Unis</FD>
<FG>Amérique du Nord</FG>
<ED>boundary conditions; Regional scope; Air quality; prediction; coupling; global; transport; models; sensitivity analysis; simulation; Aircraft observation; Summer; concentration; troposphere; spatial variations; time variations; lead; Bias; United States</ED>
<EG>North America</EG>
<SD>Condiciones límites; Escala regional; Calidad aire; Previsión; Mundo; Transporte; Modelo; Simulación; Observación por avión; Verano; Concentración; Variación espacial; Variación temporal; Plomo; Error sistemático; Estados Unidos</SD>
<LO>INIST-3144.354000146572260810</LO>
<ID>07-0317987</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0317987
   |texte=   Influence of lateral and top boundary conditions on regional air quality prediction : A multiscale study coupling regional and global chemical transport models : International Consortium for Atmospheric Research Transport and Transformation: North America to Europe, Part II
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023